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Extending graphene structure to four dimensions gives

� a two-favor lattice fermion action

� one exact non-singlet chiral symmetry

� protects mass renormalization

� strictly local action

� only nearest neighbor hopping

� fast for simulations
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Graphene electronic structure remarkable

� low excitations described by a massless Dirac equation

� two ``flavors'' of excitation

� versus four of naive lattice fermions

� massless structure robust

� relies on a ``chiral'' symmetry

� tied to a non-trivial mapping of S1 onto S1

Four dimensional extension

� 3 coordinate carbon replaced by 5 coordinate ``atoms''

� generalize topology to mapping S3 onto S3

� complex numbers replaced by quaternions
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Chiral symmetry versus the lattice

� Lattice is a regulator

� removes all infinities

� lattice symmetries survive quantization

� Classical U(1) chiral symmetry broken by quantum effects

� any valid lattice formulation must not have U(1) axial symmetry

� But we want flavored chiral symmetries to protect masses

� Wilson fermions break all these

� staggered require four flavors for one chiral symmetry

� overlap, domain wall non-local, computationally intensive

Graphene fermions do it in the minimum way allowed!
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Carbon and valence bond theory for dummies

Carbon has 6 electrons
� two tightly bound in the 1s orbital
� second shell: one 2s and three 2p orbitals

In a molecule or crystal, external fields mix the 2s and 2p orbitals

Carbon likes to mix the outer orbitals in two distinct ways

� 4 sp3 orbitals in a tetrahedral arrangement

� methane CH4, diamond C1
H

H
H

C

H

� 3 sp2 orbitals in a planar triangle plus one p

� benzene C6H6, graphite C1

� the sp2 electrons tightly held in ``sigma'' bonds

� the p electron can hop around in ``pi'' orbitals

C C

CC

C C

H H

HH

H H
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Review of graphene structure

A two dimensional hexagonal planar structure of carbon atoms

� http://online.kitp.ucsb.edu/online/bblunch/castroneto/
� A. H. Castro Neto et al., arXiv:0709.1163

Held together by strong ``sigma'' bonds,sp2

One ``pi'' electron per site can hop around

Consider only nearest neighbor hopping in the pi system
� tight binding approximation
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Fortuitous choice of coordinates helps solve

xx2 1

a b

Form horizontal bonds into ``sites'' involving two types ofatom

� ` à'' on the left end of a horizontal bond

� ` b̀'' on the right end

� all hoppings are between type a and type b atoms

Label sites by non-orthogonal coordinates x1 and x2

� axes at 30 degrees from horizontal
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Hamiltonian

H = K
X

x 1 ;x 2

ay
x 1 ;x 2

bx 1 ;x 2 + by
x 1 ;x 2

ax 1 ;x 2

+ ay
x 1 +1 ;x 2

bx 1 ;x 2 + by
x 1 � 1;x 2

ax 1 ;x 2

+ ay
x 1 ;x 2 � 1bx 1 ;x 2 + by

x 1 ;x 2 +1 ax 1 ;x 2

a

a

b

b

a b

� hops always between a and b sites

Go to momentum (reciprocal) space

� ax 1 ;x 2 =
R�

� �
dp1
2�

dp2
2� eip 1 x 1 eip 2 x 2 ~ap1 ;p2 :

� � � < p � � �
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Hamiltonian breaks into two by two blocks

H = K
Z �

� �

dp1

2�
dp2

2�
( ~ay

p1 ;p2
~by

p1 ;p2
)

�
0 z
z� 0

� �
~ap1 ;p2

~bp1 ;p2

�

� where z = 1 + e� ip 1 + e+ ip 2

~H (p1; p2) = K
�

0 z
z� 0

�

Fermion energy levels at E(p1; p2) = � K jzj

� energy vanishes only when jzj does

� exactly two points p1 = p2 = � 2�= 3
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Topological stability

� contour of constant energy near a zero point

� phase of z wraps around unit circle

� cannot collapse contour without going to jzj = 0

p1

p2

p2p/3-2p/3-p

2p/3

-2p/3

p

-p

E

p p

E

allowed forbidden

No band gap allowed

� Graphite is black and a conductor
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Hexagonal structure hidden in deformed coordinates
p

p1

2

p
-p

p

-p

Thomas Szkopek

Michael Creutz BNL 10



Connection with chiral symmetry

� b ! � b changes sign of H

� ~H (p1; p2) = K
�

0 z
z� 0

�
anticommutes with � 3 =

�
1 0
0 � 1

�

� � 3 ! 
 5 in four dimensions

No-go theorem

� periodicity of Brillouin zone

� non-trivial wrapping around one zero must unwrap around another

� two zeros is the minimum possible
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Four dimensions

Want Dirac operator D to put into path integral action  D 

� require ` 
̀ 5 Hermiticity''

� 
 5D
 5 = D y

� work with Hermitean ``Hamiltonian''H = 
 5D

� not the Hamiltonian of the three dimensional Minkowski theory

Require same form as the two dimensional case

~H (p� ) = K
�

0 z
z� 0

�

� four component momentum, (p1; p2; p3; p4)
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To keep topological argument

� extend z to quaternions

� z = a0 + i~a � ~�

� jzj2 =
P

� a2
�

0
a

a

~H (p� ) now a four by four matrix

� ``energy'' eigenvalues stillE (p� ) = � K jzj

� constant energy surface topologically an S3

� surrounding a zero should give non-trivial mapping
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Implementation

� not unique

� extend 1 + e� ip 1 + eip 2 to a sum of quaternion pieces
z = B (4C � cos(p1) � cos(p2) � cos(p3) � cos(p4))

+ i� x (sin(p1) + sin( p2) � sin(p3) � sin(p4))

+ i� y (sin(p1) � sin(p2) � sin(p3) + sin( p4))

+ i� z (sin(p1) � sin(p2) + sin( p3) � sin(p4))

� B and C are constants to be determined
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Zero at jzj = 0 requires all components to vanish, four relations

sin(p1) + sin( p2) � sin(p3) � sin(p4) = 0

sin(p1) � sin(p2) � sin(p3) + sin( p4) = 0

sin(p1) � sin(p2) + sin( p3) � sin(p4) = 0

cos(p1) + cos(p2) + cos(p3) + cos(p4) = 4 C

� first three imply sin(pi ) = sin( pj ) 8i; j

� cos(pi ) = � cos(pj )

� last relation requires C < 1

� if C > 1=2, only two solutions

� pi = pj = � arccos(C)
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As in two dimensions

� expand about zeros

� identify Dirac spectrum

� rescale for physical momenta

Expanding about the positive solution

� p� = ~p + q�

� ~p = acos(C)

� define S = sin(~p) =
p

1 � C2
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The quaternion becomes

z = BS(q1 + q2 + q3 + q4)

+ iC� x (q1 + q2 � q3 � q4)

+ iC� y (q1 � q2 � q3 + q4)

+ iC� z (q1 � q2 + q3 � q4) + O(q2)

Introduce a gamma matrix convention

~
 = � x 
 ~� =
�

0 ~�
~� 0

�


 4 = � � y 
 1 =
�

0 i
� i 0

�


 5 = � z 
 1 = 
 1
 2
 3
 4 = diag(1 ; 1; � 1; � 1)
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The Dirac operator becomes

~D = C(q1 + q2 � q3 � q4)i
 1

+ C(q1 � q2 � q3 + q4)i
 2

+ C(q1 � q2 + q3 � q4)i
 3

+ BS(q1 + q2 + q3 + q4)i
 4 + O(q2)

Reproducing the Dirac equation if we take

k1 = C(q1 + q2 � q3 � q4)

k2 = C(q1 � q2 � q3 + q4)

k3 = C(q1 � q2 + q3 � q4)

k4 = BS(q1 + q2 + q3 + q4)
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Position space rules from identifying eip� terms with hopping

� on site action: 4iBC  
 4 

� hop in direction 1:  j (+ 
 1 + 
 2 + 
 3 � iB
 4) i

� hop in direction 2:  j (+ 
 1 � 
 2 � 
 3 � iB
 4) i

� hop in direction 3:  j (� 
 1 � 
 2 + 
 3 � iB
 4) i

� hop in direction 4:  j (� 
 1 + 
 2 � 
 3 � iB
 4) i

� minus the conjugate for a reverse hop

Notes

� a mixture real and imaginary coefficients for the 
 's

� 
 5 exactly anticommutes with D

� D is purely anti-Hermitean

� 
 4 not symmetrically treated to ~
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The k coordinates should be orthonormal

� the q's are not in general

qi � qj

jqj2
=

B 2S2 � C2

B 2S2 + 3C2

If B = C=S the q axes are also orthogonal

� allows gauging with simple plaquette action

� Borici: B = 1 , C = S = 1=
p

2
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Alternative choice for B and C from graphene analogy

� extend Brillouin zone to include neighboring zones

� zeros of z in momentum space form a lattice

� give each zero 5 symmetrically arranged neighbors

� C = cos(�= 5), B =
p

5

� interbond angle � satisfies cos(� ) = � 1=4

� � = � � acos(1=2) = 104:4775: : : degrees

� 4-d generalization of the diamond lattice
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The physical lattice structure

Graphene: one bond splits into two in two dimensions

� � = � � acos(1=2) = 120 degrees

iterating

� smallest loops are hexagons
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Diamond: one bond splits into three in three dimensions
� tetrahedral environment
� � = � � acos(1=3) = 109:4712: : : degrees

iterating

� smallest loops are cyclohexane chairs
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4-d graphene: one bond splits into four
� 5-fold symmetric environment
� � = � � acos(1=4) = 104:4775: : : degrees

iterating

� smallest loops are again hexagonal chairs
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Issues and questions

Requires a multiple of two flavors
� can split degeneracies with Wilson terms

Only one exact chiral symmetry
� not the full SU(2) 
 SU(2)

� enough to protect mass
� � 0 a Goldstone boson
� � � only approximate

Not unique
� only need z(p) with two zeros
� Borici's variation with orthogonal coordinates
� C = cos(�= 5), B =

p
5

� approximate ``pentahedral'' symmetry
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192 element hypercubic symmetry group reduced to 48 elements

� natural time axis along major hypercube diagonals

� 24 element tetrahedral symmetry in space

� permutation of links in positive direction

� half of these elements have negative parity

� time reversal exchanges positive and negative links

� 2 � 24 = 48 element discrete symmetry group
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Do we need additional parameters to tune? Bedaque, Buchoff, Tibursi, Walker-Loud

� no full space-time symmetry

� speed of light for fermions and gluons may differ

� In general the gauge action requires both 4 and 6 link terms

� for BS = C four link terms should be adequate

� C = cos(�= 5), B =
p

5

� approximate ``pentahedral'' symmetry

� 4-d generalization of diamond

� should constrain 6 link terms
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Zero modes from gauge field topology only approximate

� the two flavors have opposite chirality

� their zero modes can mix through lattice artifacts

� similar to staggered, but 2 rather than 4 flavors

Comparison with staggered

� both have one exact chiral symmetry

� both have only approximate zero modes from gauge topology

� four component versus one component fermion field

� two versus four flavors

� rooting approximation not required for two light flavors
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Summary

Extension of graphene and diamond lattices in 2 and 3 dimensions:

� a two-flavor lattice Dirac operator

� one exact chiral symmetry

� protects from additive mass renormalization

� eigenvalues purely imaginary for massless theory

� in complex conjugate pairs

� strictly local

� should be very fast to simulate
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